Metallographic Images for Quality Classification in Industry
نویسندگان
چکیده
The aim of the research is the development and testing of new methods to classify the quality of metallographic samples of steels with high added value, for example, grades X70 according API. In this paper, we address the development of methods to classify the quality of slab samples images with the main emphasis on the quality of the image center called as a segregation area. For this reason, we introduce an alternative method for automated retrieval of the region of interest. In the first step, the metallographic image is segmented using both spectral method and thresholding. Then, the extracted macrostructure of the metallographic image is automatically analyzed by statistical methods. Finally, the automatically extracted region of interest is compared with the results of human experts. A practical experience with retrieval of non-homogeneous noised digital images in an industrial environment is discussed as well.
منابع مشابه
Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials
The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and ass...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملSimulation of Foaming and Deformation for Composite Aluminum Foams
In this study, at the first stage, the rupture criterion of bubbles wall in Aluminum metal foam liquid was investigated by using Lattice Boltzmann. The two phases modeling were accomplished by using a modified Shan-Chen model. This model was run for several bubbles in A356+3wt.%SiC melt system. Then, bubbles morphologies (virtual metallographic) for A356+3wt.%SiC foams were simulated. Results s...
متن کاملAutomatic Classification of Benign And Malignant Liver Tumors In Ultrasound Images
Introduction: Differentiation of benign and malignant liver tumors is very important for finding appropriate treatment procedure. Human eyes sometime are not able to diagnose the type of liver tumor. Texture analysis is considered as a suitable method to increase the diagnostic power of medical images. In this study texture analysis is employed in order to classification of ben...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کامل